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Abstract
A class of simple, (2 + 1)-dimensional, discrete models is reviewed, which allow us to study
the evolution of surface patterns on solid substrates during ion beam sputtering (IBS). The
models are based on the same assumptions about the erosion process as the existing continuum
theories. Several distinct physical mechanisms of surface diffusion are added, which allow us to
study the interplay of erosion-driven and diffusion-driven pattern formation. We present results
from our own work on evolution scenarios of ripple patterns, especially for longer timescales,
where nonlinear effects become important. Furthermore we review kinetic phase diagrams, both
with and without sample rotation, which depict the systematic dependence of surface patterns
on the shape of energy depositing collision cascades after ion impact. Finally, we discuss some
results from more recent work on surface diffusion with Ehrlich–Schwoebel barriers as the
driving force for pattern formation during IBS and on Monte Carlo simulations of IBS with
codeposition of surfactant atoms.

1. Introduction

The generation of surface patterns by ion beam sputtering
(IBS) at low or intermediate ion energies has become
a promising tool for nanotechnologies. Since the early
observations of self-organized ripple patterns emerging on
solid substrates under IBS [1], tremendous improvements in
pattern variety and quality have been achieved (for a review
see [2]). Nowadays, it is possible to fabricate regularly
spaced ripple structures [3] as well as ordered arrays of
quantum dots [4] on a wide variety of substrates. The
patterns form spontaneously, while the system is driven far
from equilibrium by the steady flux of impinging ions. Many
of the physical mechanisms underlying this self-organized
pattern formation remain poorly understood. Consequently,
the unexploited potential of IBS as a fabrication method
for nanostructures cannot be assessed systematically and
new processing conditions have often led to surprising new
results. There are a number of excellent recent reviews of
the field available, which cover both experimental findings and
theoretical modeling [2, 5, 6]. Here, we will mainly focus on
the theoretical approach of (kinetic) Monte Carlo simulations

by discussing results which we achieved during the last few
years with this method and try to put them into a coherent
perspective.

The emerging surface patterns may be classified roughly
into three types, according to the dominant mechanism by
which they are formed: Bradley–Harper ripple structures,
Ehrlich–Schwoebel structures and ordered arrays of regular
quantum dots. They will be briefly introduced in the following.
Besides these, there are two more prototypes, which constitute
reference patterns for many purposes, and which may also
appear during IBS: the randomly rough surface and the smooth
or layer-by-layer eroded surface. The rough surfaces usually
exhibit self-affine properties [7].

The formation of periodic ripple structures has been
observed experimentally in amorphous materials [8], metallic
crystals [9, 10] and semiconductors amorphized by the ion
beam [11, 12]. Ripples are typically oriented perpendicular
to the projection of the ion beam in the surface plane for small
angles of incidence θ (relative to the surface normal), whereas
for larger angles θ the observed ripple pattern is rotated by 90◦.

At early times, ripples form and grow exponentially (as the
surface roughness does). With increasing ion fluence, at least

0953-8984/09/224015+13$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/22/224015
mailto:a.hartmann@uni-oldenburg.de
mailto:kree@theorie.physik.uni-goettingen.de
mailto:yasseri@theorie.physik.uni-goettingen.de
http://stacks.iop.org/JPhysCM/21/224015


J. Phys.: Condens. Matter 21 (2009) 224015 A K Hartmann et al

two stunningly distinct scenarios of evolution appear. Either a
crossover from ripple structures to self-affine, rough surfaces
is observed [10], with ripple wavelength and roughness
increasing with time as a power law, or the roughness
saturates and extremely well-defined regular ripples appear,
which exhibit increasing order up to the longest experimental
timescales [3].

Our present partial understanding of these features is
based upon the work of Bradley and Harper (BH) [13],
who found that Sigmund‘s sputtering theory [14] implies a
curvature dependence of the sputtering yield. This will lead
to a curvature instability, which is stabilized again by surface
diffusion at small length scales. The original linear theory of
BH was extended into a nonlinear continuum theory of surface
evolution by sputter erosion, which takes on the form of an
anisotropic Kuramoto–Sivashinsky (KS) equation [15] with
additive noise [16–18]. The linear BH theory should apply to
the early stages of pattern evolution, but it fails to predict the
observed growth rates quantitatively [19].

To investigate the analytic continuum theory beyond the
linearized regime, numerical integrations of the KS equation
have been performed [20, 21], which uncovered two markedly
different long-time regimes depending on the signs of the
nonlinear couplings. None of these scenarios, however, is
capable of explaining the increase of order observed under
some carefully controlled processing conditions.

It is a hallmark of BH ripple structures that they are
oriented by the ion beam direction, but in many experiments,
especially on single-crystalline metallic substrates, patterns
are observed, which are oriented by the anisotropies of the
surface. Such structures may be either ripple-like, dot-
like or hole-like. In many aspects they closely resemble
structures observed in molecular beam homoepitaxial (MBE)
growth where their emergence has been carefully studied
experimentally and theoretically. The common driving force
of such structures has been identified as non-equilibrium
surface currents, which are due to additional energy barriers
against diffusion over step edges (Ehrlich–Schwoebel barriers
EES). These currents provide a net uphill mass transport and
thus generate diffusional instabilities, which lead to mound-
like structures in MBE. Phenomenological expressions of
the Ehrlich–Schwoebel (ES) current have been added to the
continuum theory of IBS, but no first-principles derivation of
the analytic form of these currents is available. To apply the
MBE concepts to IBS, it is assumed that IBS creates extra
vacancies at the surface, which diffuse like the adatoms, but
with a different—usually higher—activation energy. Thus one
expects either clustering of vacancies into hole-like structures,
or clustering of adatoms into mound-like structures, driven
by ES currents. A crossover between BH ripple patterns
and ES patterns can be induced by varying the temperature.
For high temperatures (EES � kT ), the ES barriers are
ineffective, and for very low temperatures thermal diffusion
is too slow to significantly contribute to the evolution of the
surface morphology. Thus ES patterns are expected in an
intermediate temperature regime, which has been observed in
experiments [2].

A third class of patterns has first been observed on
GaSb [4]. It consists of ordered arrays of regularly shaped

dots (quantum dots). Meanwhile, similar structures have been
found on other binary substrates (InP, InAs) [22, 23], but also
on Si [24, 25]. The dots usually form hexagonal lattices, but
square lattices have also been observed [23]. The appearance
of such structures depends sensitively upon the processing
conditions. First they were observed under normal incidence,
but subsequently they were found under oblique ion incidence
with [23] and also without [26] sample rotation. The type of
ordering may change by only slight changes in temperature.
The evolution of order of these patterns is characterized by
a saturation of roughening and an increase of long-range
order and shape regularity with sputtering time, similar to the
evolution of the sharp ripples obtained in [3]. These patterns
could not be explained within the continuum theory based upon
the anisotropic Kuramoto–Sivashinsky model. There are two
recent extensions of the continuum model, which are able to
produce hexagonally ordered dots as a generic feature. One of
them introduces an ad hoc damping term into the Kuramoto–
Sivashinsky equation [27], while the other takes into account
an adatom density as a separate variable within a dynamical
model built in analogy to hydrodynamic models of aeolian
sand dunes [28, 29]. Both models need redeposition as a
critical feature. There may be other mechanisms leading to
quantum-dot arrays. In MBE such structures appear due to
elastic stresses, especially in heteroepitaxy. During sputtering
erosion the surface layer of a binary compound develops
a stoichiometric ratio, which differs from the bulk [30].
Thus misfits may lead to considerable stresses, which have
not been included in continuum theories at present. The
facilitated generation of quantum-dot arrays on Si [31], which
is covered by a codeposited submonolayer of Mo, also hints at
the important role of the interplay between redeposition and
binary system dynamics. Recently, this interplay has been
studied more systematically using a technique, which is called
surfactant sputtering, by Hofsss and Zhang [32]. In this set-
up, the codeposition of submonolayer ‘surfactant’ species can
be controlled and gradients of the codeposited density can
be generated. Besides useful technical applications, these
experiments also constitute a good testing ground for models
involving binary adatom layers.

Given the incomplete understanding of the physical
mechanisms of surface pattern formation by IBS, computer
simulations may be particularly helpful, especially if combined
with results from continuum theory and compared to
experimental findings. Two types of simulations have been
performed up to now. Koponen et al [33, 34] calculated
collision cascades emerging from single-ion impact within
the binary collision approximation. They find ripples in
accordance with linearized BH theory [34] which appear both
with and without additional surface relaxation processes. This
indicates the presence of an ion-induced surface diffusion
mechanism, which has also been predicted from BH [18]. The
simulations did not yet reach timescales where the nonlinear
effects of the continuum theories could be analyzed. On
the other hand, scaling properties of the roughness of ion-
irradiated surfaces have also been investigated within this
approach [33]. In a different approach, Cuerno et al [35]
proposed a simple, discrete stochastic model with an update
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rule, which incorporates the θ dependence of the sputtering
yield and a simple curvature dependence of the erosion
probability ad hoc. Within this model, it is possible to study the
crossover from ripples to rough surfaces during the evolution of
an irradiated one-dimensional system. This approach has been
extended to two-dimensional systems and to kinetic Monte
Carlo simulations [19, 36–41], which also take into account
surface diffusion processes. In this paper, we review results we
obtained [38–41] with such discrete models, as well as some
recent and as yet unpublished results from our work.

The advantages of discrete Monte Carlo simulations nicely
complement the advantages of continuum approaches. MC
models may be designed, which are based on exactly the
same assumptions as BH theory and its extensions [38].
Thus it is possible to check predictions of continuum
expansions and identify artifacts, which only result from the
truncation of the expansion. Even more important is the
fact that non-equilibrium surface currents are modeled quasi-
atomistically by energy barriers, which can be calibrated by
independent experiments, whereas continuum theories have to
use phenomenological forms of such currents. Furthermore,
the flexibility of MC modeling makes it easy to include new
mechanisms, like codeposition, for example. On the other
hand, a kinetic MC simulation only has access to a limited
range of time and length scales, which may not cover all the
parameter regions of experimental interest.

In the following, we first introduce our simulation models
and discuss scenarios of the evolution of ripple patterns. Then
we review results on kinetic phase diagrams, which describe
the dependence of patterns on the shape of the collision cascade
after ion impact, as described by the Sigmund formula [13, 14].
In particular we will compare patterns on rotated samples with
patterns emerging under identical processing conditions on
non-rotated samples. In the next section we demonstrate that
the crossover from erosion-driven to diffusion-driven pattern
formation can be studied by Monte Carlo simulations. Finally
we present the first results on Monte Carlo simulations of IBS
with codeposition of surfactant atoms, which has recently been
introduced as a new and promising variant of controlled pattern
formation by IBS [32].

2. Kinetic Monte Carlo simulation

We study lattice systems of size L × L with periodic boundary
conditions. The material surface is defined by a time-
dependent discrete height function h(x, y, t) ((2 + 1)D solid-
on-solid (SOS) model). Hence, this can be interpreted as a
simple-cubic lattice of atoms, or as simply columns of ‘blocks’
piled on each other. For all simulations described here, we start
with a surface which is initially flat, i.e. h(x, y, 0) = const.
Rough or pre-structured surfaces are implemented very easily.

We have included surface defect creation via sputtering
and surface defect motion via diffusion. Each simulation step
consists of the sputtering generated by one ion and a certain
number of diffusion steps. The simulation time is measured
in terms of these steps and corresponds to the fluence in
experiments.

d
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Figure 1. Sketch showing the collision cascade ellipsoid, as
described in the text. Erosion may take place from horizontal parts of
the surface (atoms at position 3 or 4) or from vertical parts of the
surface (atoms at positions 1 or 2). The latter has to be followed by
surface relaxation steps as indicated to ensure the SOS condition.

2.1. The sputtering process

According to Sigmund’s sputtering theory [14], the rate at
which material is removed from a solid surface through the
impact of energetic particles is proportional to the power
deposited there by the random slowing down of particles.
The average energy E(r′) deposited at surface point r′ =
(x ′, y ′,−z′) is given by the Gaussian distribution

E(r′) = ε

(2π)3/2σμ2
exp

(
− (z′ + d)2

2σ 2
− x ′2 + y ′2

2μ2

)
. (1)

Here we have used a local Cartesian coordinate system with
origin at the point of penetration and with the z axis coinciding
with the ion beam direction. d‖ = z′ + d is the distance
of the surface point from the final stopping point of the ion,
measured along the ion trajectory, d⊥ = √

x ′2 + y ′2 is the
distance perpendicular to it; σ and μ are the widths of the
distribution parallel and perpendicular to the ion trajectory,
respectively; ε is the total energy deposited and d is the
average depth of energy deposition. Sigmund’s formula is
the basis for nearly all theoretical treatments and analysis of
experimental results so far, although it may not correspond to
the actual form of energy deposition. We have performed [42]
binary collision simulations to find a model for E(r′) that is
closer to the physical reality. Although this model differs
from Sigmund’s formula in several qualitative and quantitative
aspects, we found that the formation of ripples due to a
curvature-dependent yield remains a stable feature.

In [38], we proposed to simulate the sputtering process by
applying the Sigmund formula (1) to each single-ion impact.
An ion starts at a random position in a plane parallel to the
plane of the initially flat surface (x–y plane) and follows a
straight trajectory inclined at an angle θ to the normal of this
plane. The azimuthal angle φ describes the orientation relative
to the x axis of the ion beam projection onto the x–y plane.
The ion penetrates the solid through a length d and releases
its energy, such that an atom at a position r = (x, y, h) is
eroded (see figure 1) with probability proportional to E(r). It
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should be noted that, consistent with the assumptions of the
continuum models [5, 13, 16], this sputtering model assumes
no evaporation, no preferential sputtering of surface material
at the point of penetration, no redeposition of eroded material
and no creation of extra adatoms from the bulk (the last
two constraints have been lifted in the extended continuum
theory [28, 29]). The erosion must be implemented in a
way which respects the solid-on-solid assumption, i.e. the
surface height must evolve as a single-valued discrete function
h(x, y, t). For our initial projects [38, 39], we only allowed
particles at the top of a column to be sputtered away;
meanwhile we extended the sputtering model and included
erosion from vertical parts of the surface as well (i.e. atoms
marked ‘1’ and ‘2’ in figure 1). The time t is measured in
terms of the ion fluence, i.e. the number of incident ions per
two-dimensional lattice site (x, y). Incidence angle θ , and
azimuthal angle φ can be adjusted to the actual geometric
situation which is to be modeled. The parameters d, σ and μ,
which are energy-and material-dependent, can be obtained by
SRIM [43]. For the simulations in [38–41], we have put ε to be
(2π)3/2σμ2, which leads to sputtering yields Y � 7.0, which
should be kept in mind when comparing simulation results to
experimental data. According to the Bradley–Harper theory,
the ripple wavelength λ scales like λ ∼ Y −1/2 so that lower
yields lead to correspondingly larger length scales.

2.2. Modeling surface diffusion

During our studies, we have used different models to describe
the surface motion of atoms. These range from simple,
irreversible surface relaxation to activated hopping over energy
barriers, which may depend both on initial and final states of
the move and include ES barriers. We always use full diffusion
models, so one diffusion step refers to a complete sweep of the
lattice. In the following, we briefly introduce the three basic
types of diffusion models, which we have used throughout our
simulations.

The first is a simple non-thermal irreversible surface
relaxation introduced by Wolf and Villain [44]. For each
column, it is tested once during a sweep whether the particle
at the top of the column can increase its coordination
number, i.e. its number of nearest neighbors, by hopping to a
neighboring column. If this is the case, the particle hops to that
neighboring column where it obtains the highest coordination
number. This model corresponds to an irreversible downhill
relaxation of the energy, if each nearest neighbor contributes
a fixed bonding energy. It may be dominant at low enough
temperatures because surface configurations with a very high
energy (a single column of atoms without nearest neighbors,
for example) are most probably locally unstable and can be left
without crossing any energy barrier.

The second model [45] is based on the assumption that
the diffusion process is determined by the Hamiltonian, which
also controls the thermal roughening of a facet on the surface.
For each step, a site i and one neighbor site j are randomly
selected. The trial move is an atom hopping from i to j ,
i.e. hi = hi − 1 and h j = h j + 1. We calculate the surface

energy before and after the hop using the energy function

E = J

2

∑
〈i, j〉

|hi − h j |n . (2)

J is a nearest-neighbor coupling constant and hi is the
height variable at site i . The summation extends over
nearest-neighbor pairs. We have used n = 2 in our
simulations, which implies higher barriers for uphill hops and
for hops approaching a step edge on an uphill terrace than for
detachment from step edges and reapproaching from a step
edge on an uphill terrace, respectively.

The hop is allowed with probability

p(i → f ) = 1

/[
1 + exp

(
E(i → f )

kBT

)]
(3)

where E(i → f ) is the energy difference between the initial
and final states of the move, T is the substrate temperature and
kB is the Boltzmann constant.

The third (‘Arrhenius’) model is based on a kinetic MC
procedure. For each step, a move from initial (i ) to final ( f )
configuration is chosen randomly from a predefined list. Here
we restrict moves to nearest-neighbor hops from site i to site
f , but we have to include more moves, if we want to model
material-specific diffusion processes. The move is performed
with a probability proportional to an Arrhenius hopping rate

k = k0 exp

(
− E(i → f )

kBT

)
(4)

k0 ∼ 2kBT/h is the vibrational frequency of a surface adatom,
i.e. a hopping attempt rate, h being Planck’s constant. Values
of the energy barriers E(i → f ) have to be taken from
experimental or simulation data. In the simplest case, the
binding energy of an adatom is the sum of interaction energies
ENN with its nearest neighbors (bonds) and the total binding
energy is identified with the energy barrier, so that E(i →
f ) = ENN ∗ (number of nearest neighbour atoms). As a slight
generalization, one may assume that the bond of an adatom
to a substrate atom contributes a different energy ES 
= ENN,
in which case E(i → f ) = ES + ENN ∗ nn(i), where
nn(i) denotes the number of in-plane nearest-neighbor atoms
of site i . In these models, the barriers only depend upon the
initial state i and are determined by the number of bonds,
which have to be broken to leave i . They are referred to as
bond-breaking models. Note that in these models the energy
barrier for diffusion along a step edge is the same as that for
detachment from the step edge. Furthermore the diffusion
of an isolated adatom (barrier ES) is much smaller than for
an isolated surface vacancy (barrier ES + 3ENN). For many
materials this is a poor representation of physical reality, but
the model has the advantage of using only two parameters,
which have to be calibrated. Therefore we use it as a generic
model in cases where diffusion only smooths the surface and
leads to a wavelength selection of BH ripples.

In a more refined modeling, energy barriers may depend
both on initial and final states of a move (referred to as
Kawasaki-type barriers, in analogy to the Kawasaki dynamics
of Ising systems). For our simulations we use two types of such
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Figure 2. Surface profiles (L = 256, θ = 50◦, φ = 22.0◦, d = 6.0, σ = 3.0, μ = 1.5, Kawasaki-type diffusion with default values for
barriers) at a substrate temperature of 600 K and at different times. Starting from top–bottom, left–right, t = 0.5, 1.5, 4.0, 8.0, 12.0 and
18.0 ions/atom. Ion beam direction, indicated by the bar, is perpendicular to ripple orientation. The scales show the surface height measured
from the minimal height of the surface profile.

barriers:

• net bond-breaking barriers: Enb(i → f ) =
max(0, (nn(i) − nn( f ))ENN)

• ES barriers:

EES(i → f ) =

⎧⎪⎨
⎪⎩

EES if f is in plane with i and

at the upper edge of a step

0 otherwise.

Default values used in many of our simulations are EES =
0.15 eV for the ES barrier, a substrate term ES = 0.75 eV
and a nearest-neighbor bonding of magnitude ENN = 0.18 eV.
Temperature is measured in units of eV k−1

B (T � 0.025 eV k−1
B

corresponds to room temperature 300 K). Hence, the hopping
attempt rate k0 is ∼1012–1013 s−1, with a correspondingly low
hopping probability resulting from equation (4), which would
slow down the simulation. Thus we incorporate the factor
exp(−ES/kBT ) into a rescaled attempt rate k1 such that the
hopping rate is

k = k1 exp

(
− �E

kBT

)
(5)

where k1 = k0 exp(− ES
kBT ) � k0 and �E = Enb(i →

f ) + EES(i → f ). The comparison of this attempt rate to
the ion current density used in experiments determines the
ratio between the number of sputtering steps and the number
of surface diffusion steps made in the simulation. Note that
for isolated atoms on plane terraces, which are far from down

steps, �E = 0, i.e. each hop is accepted independent of the
temperature.

To set timescale- and temperature-related parameters,
consider, as a typical example, a system with N =
1015 atoms cm−2 at the surface. Since typical experimental
ion current densities are of the order of F = 7.5 ×
1014 ions cm−2 s−1, this implies a flux of 	 = F/N �
0.75 ions/(atom s). From the values given above, we get
default hopping attempt rates k1 of around 100 s−1 for
temperatures around 350 K; hence 100 sweeps of the diffusion
mechanism correspond to 0.75 ions/surface atom. Thus, we
would initiate a diffusion step (one sweep over the lattice)
every 	L2/k1 = 0.0075L2 erosion steps. To study crossover
from erosion-to diffusion-driven pattern formation, we will
increase this default rate by factors up to 103 in section 6.

3. Typical pattern evolution scenarios of BH ripples

The MC models described above are capable of reproducing
many salient features of IBS patterns observed in experiments.
A typical scenario of surface evolution with smoothing
surface diffusion and angle θ below a critical threshold has
been discussed by Monte Carlo simulations in [38]. It
starts as depicted in the upper row of figure 2. At short
times, the surface roughens. Then ripples perpendicular
to the x–y projection of the ion beam are formed. The
further evolution, however, strongly depends upon the surface
diffusion. For thermodynamic diffusion and for Arrhenius
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Figure 3. Long-time surface evolution. Left: high temperature T = 0.2 eV leads to strong, smoothing diffusion in Arrhenius and
thermodynamic models. After 20 ions/atom ripple patterns are nearly destroyed; middle: Arrhenius diffusion at T = 600 K for
400 ions/atom. Continuation of the evolution in figure 2. Highly ordered and stable ripple patterns develop. Right: Wolf–Villain-type
diffusion for t ≈ 104 ions/atom, extremely ordered ripple patterns with tilted orientation. For all three panels L = 256, φ = 22◦, θ = 50◦.

diffusion mechanisms at temperatures, where ES barriers
are not a dominant pattern forming mechanism, the ripples
propagate slowly, coarsen and, due to the increasing influence
of nonlinear effects, typically disappear at longer times, see
figure 3 (left panel). The orientation of the ripples is rotated
by 90◦ if θ exceeds some critical value, similar to many
experiments and to the results of linear continuum theory. The
long-time behavior, where the ripples have disappeared, has
been studied to some extent in [38].

For intermediate times, where the ripples coarsen, we
found that the ripple wavelength increases with time. For
the Arrhenius diffusion, the ripple wavelength as a function
of time displays a power law increase, similar to results in
experiments [46]. The value of the exponent seems to be
non-universal. Power law coarsening behavior has also been
observed in a number of experiments [2] with varying values
for the exponent. We have also found stronger (super-power
law) increases (within our second model of surface diffusion)
and weaker (supra-power law) increases (when doubling the
temperature for the Arrhenius diffusion) in our simulation,
but given the time intervals accessible in simulations and
in experiments it is hard to draw conclusions regarding a
comparison with experimental results.

We have also studied the propagation velocity of the
ripples by means of clustering algorithms, i.e. crests of ripples
are defined as connected components of columns, where the
height is significantly larger [39] than the average height. We
observed that the ripple velocity obeys a power law decrease
with increasing time. This again compares qualitatively to
experiments [46], but the value of the exponent seems again
to be non-universal.

The coarsening and vanishing of ripples is, however, not
the only scenario we observed. Figure 3 shows results of
simulations for longer times. The above-described scenario
with strong and smoothing surface diffusion develops into
patterns depicted in figure 3 (left). Figure 3 (middle)
shows the pattern under Arrhenius diffusion as in figure 2,
but after 400 ions/atom. Here, the roughness saturates
(note the grayscale of height in the figures) and the ripples
develop towards increasing order, i.e. the number of defects

reduces. Note that the defect-free ripple pattern is still oriented
perpendicular to the projected ion beam direction. Using an
irreversible Wolf–Villain surface relaxation, [38] (see figure 3
(right)), the patterns evolve towards increasingly sharp and
ordered ripples. The orientation of these ripples is, however,
tilted (≈17◦) with respect to the projected ion beam direction.
These scenarios, which appear if surface motion is dominated
by non-equilibrium diffusion currents, are reminiscent of the
ripples observed in [3]. Tilted ripples have also been found
as an asymptotic scenario within the anisotropic Kuramoto–
Sivashinsky equation in [20], but a scenario with long-term,
highly ordered ripples, which do not change their orientation,
could not be explained within this continuum theory.

4. Dependence of patterns on ion energy distribution

In general, the evolution of patterns depends upon all the
processing conditions, for example on substrate, ion energy,
temperature and geometric parameters of the set-up. The
parameter space is much larger than what can be explored by
experiments in a feasible time, so one concentrates on easily
controllable parameters, which are expected to have significant
influence on the pattern formation. One such parameter is the
temperature, which controls the competition between the BH
mechanism and ES currents as main driving forces for pattern
formation. The above-sketched crossover scenario between
BH and ES patterns has been confirmed by combining data
from a number of experiments [2].

In MC simulations, we can vary all the parameters with
ease and therefore we can study parts of the parameter space,
which are hard to access experimentally. As an example,
we exhaustively studied the short and medium time behavior
of surface evolution as a function of the energy-distribution
parameters μ and σ of equation (1). We have studied about 50
different (σ,μ) combinations (L = 128, θ = 50◦, φ = 22◦)
using Arrhenius diffusion with bond-breaking term and ES
barrier of 0.15 eV at a high temperature, kBT = 0.1 eV, to
avoid a too strong driving force from EES. We observed six
different types of qualitative behavior, corresponding to six
different regions in the (σ,μ) space. In figure 4 these six
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Figure 4. Different topographic regions (θ = 50◦, d = 6). Region I:
rough surface; II: holes; III: clear ripples oriented perpendicular to
ion beam direction; IV: short ripples (resulting from increased μ);
V: dots; VI: non-oriented structures. The short arrows indicate the
evolution of the boundaries between different regions with respect to
time. Hence, region III grows at the expense of region I, while region
II describes only a short transient.

regions are indicated for t = 3 ions/surface atom at which
almost all the surface topographic features are distinct; the
corresponding profiles are shown in figure 5. The boundaries

shown in this sketch do not represent abrupt transitions from
one topography to another. Rather we observe a smooth
crossover from one behavior to the other. For this reason, we
have not used straight lines to represent them in the diagram.
Also, we have focused on a typical time t = 3, corresponding
to timescales often used in experiments, which exhibit a rich
behavior as a function of the straggling parameters μ and σ .
Only one systematic change of the boundaries occurs with
time, which is described below. Finally, although the results
collected in figure 4 were obtained at θ = 50◦, similar ‘kinetic
phases’ also occur at other values of θ , with slight deviations
at the boundaries.

We performed SRIM simulations [43] to map the kinetic
phase diagram (figure 4) to experimental set-ups. The
following list is just to give a few examples. Region V: 1.5–
1.7 keV neon (Ne) ion sputtering of copper(Cu); 1.2–1.4 keV
Ne ion sputtering of germanium (Ge). Region IV: 650–800 eV
Ne ion sputtering of silicon (Si). Region III: 800 eV–1.1 keV
Ar ion sputtering of silicon (Si); 550–700 eV Ne ion sputtering
of C. Note that for most materials and parameter combinations
σ � μ, hence region V might be difficult to access. Also,
SRIM simulations reveal that very large σ and μ, i.e. beyond
the values considered here, are impractical, since they can only
occur for a higher d , whereas the value of d is itself restricted
by the range of ion energies that lead to ripple formation.

The following features distinguish the different topogra-
phies in figure 5:

Region I: rough surface (see figure 5(I)) which, as time
increases, evolves to a hole topography. The sizes of the holes
grow and finally coalesce to a ripple topography at long times
(see [40]).

IV V VI

I II III

Figure 5. Profiles for parameters chosen from each topographic region in figure 4; θ = 50◦, d = 6, t = 3.0. (I) σ = 1, μ = 0.5; (II) σ = 1,
μ = 1.5; (III) σ = 3, μ = 1.5; (IV) σ = 4, μ = 2.5; (V) σ = 5, μ = 5; (VI) σ = 0.5, μ = 5. The bar, on all profiles, denotes the ion beam
direction.
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Region II: holes are already prominent in this region (see
figure 5(II)); here the number of holes increases with time, and
again ripples are formed at long times, but at an earlier time
than in region I (not shown as a separate figure).

Note that the number of holes decreases [40] with
increasing sputtering depth d . On the other hand, if we vary θ ,
the number of holes increases [40] with increasing θ . Ripples
can be formed here at this time (t = 3) if θ is increased beyond
θr (t = 3) � 60◦.

Region III: the ripple phase [38, 39]. Having observed in
regions I and II that holes evolve into ripples with time, we
studied this region from the very earliest times (t = 0–3) but
found only very tiny holes, i.e. not as pronounced as in region
II, in the course of ripple formation. Thus, comparing regions
I, II and III, there seem to be two different processes of ripple
formation. Ripples can be formed quickly by evolving directly
from a slightly rough surface, or they can be formed slowly
via the creation of holes, which coalesce to ripples on longer
timescales. Note that in regions I and II the resulting ripple
wavelength is smaller than the size of the holes generated on
smaller time, while in region III the ripple wavelength is larger
than the tiny holes.

To summarize the dynamical behavior observed in regions
I–III, for long (but not infinite) times ripples are formed
everywhere, but region III grows at the expense of the two
other regions. Region II represents only a short transient
behavior. It might extent further to larger values of σ

in a very narrow range between regions I and III, but we
cannot resolve this with our limited number of parameter
combinations. Please note that at very long times, beyond the
usual timescales accessible in standard experiments, nonlinear
effects become more important and the ripples coarsen and
disappear again [38, 39].

Region IV: consists of a mixture of dots and short ripples,
which eventually give way to the dot ‘phase’ (region V) as σ

is increased. Hence, this region seems to ‘interpolate’ between
regions III and V.

Region V: consists of dots. These dots are formed on some
ripple-like structures oriented perpendicular to the ion beam
direction, as discussed below in more detail. Noting that our
model is a solid-on-solid model on a square lattice, the dots
are not dissimilar to the QDs predicted by theory [47, 48] and
observed in experiments [4, 24].

Region VI: consists of non-oriented structures exhibiting
a typical length scale, but only a slight orientation preference
parallel to the ion beam. This region, as mentioned above, is
probably difficult to access in experiments.

More results about this phase diagram, including time
dependence, can be found in [40].

5. Patterns on rotated samples

Substrate rotation is a special processing condition considering
of increasing technological interest, since quantum dots can be
generated [4] in this way.

We have included rotations in our MC simulations [41]
by choosing a random azimuthal angle φ for each impinging
ion, which corresponds to a rotation, which is much faster

than the anisotropic pattern forming processes. As seen from
figure 6 (and figure 7, see below), no anisotropy can be
found with substrate rotation, as expected from the continuum
theory. The ripple structures obtained for μ � 2 (region III of
figure 5) do not appear for rotated substrates. The underlying
parallel ripples of the dot region (region V of figure 5) are
also absent for rotated substrates. However, hole formation
is not suppressed: we get holes with and without rotation, as
is visible in figure 5. This fact can be understood [40] from
the continuum theory, which predicts roughly equal erosion
rates along both directions for parameters in the hole region,
hence there is no anisotropy to be destroyed. Furthermore,
ripple patterns perpendicular with respect to the ion beam
direction are replaced by non-oriented structures, and the
ordered parallel ripples are no longer present if the substrate
is rotated (see figure 6).

For a closer inspection, we calculate the structure factors,
S(k, t) = |h(k, t)|2, from the Fourier transform h(k, t) of the
height field h(r, t). In particular we consider four prototypical
topographies marked by letters S, H, N and D in figure 6. S
stands for ‘relatively smooth’, H for ‘hole’, N for ‘non-oriented
structures’ and D for ‘dots’. The results are shown in figure 7.
As can be seen from this figure, and as expected, there is no
anisotropy visible in all cases. In the case of the relatively
smooth surface S, there is also no characteristic length scale.
For the hole topography, H, there is still no specific length
scale but there now exists an upper bound kub on |k| due to
the presence of the holes. On the surface with non-oriented
structures (N) a well-defined length scale with kub as well as a
lower bound klb can be found. And finally, in the case of the
dot topography (D), we also have a characteristic length scale,
but klb is shorter here than for the N topography, which implies
that the average separation of the dots is larger than that of the
non-oriented structures, as expected from figure 6.

6. Interaction of erosion- and diffusion-driven
patterns

The interplay of erosion and surface diffusion is of particular
importance for the pattern formation during IBS. Let us first
take a look at the θ = 0 case, where no BH ripples
are generated. Figure 8 shows different patterns generated
by identical erosion from ions at normal incidence under
the action of (a) no surface diffusion, (b) bond-breaking
diffusion and (c) net bond-breaking diffusion at 120 K. (b)
and (c) contain an identical (default) ES barrier, but the
effectively enhanced diffusivity of surface vacancies leads to
clear pyramid and pit structures in (c) with a length scale of
≈10 lattice constants.

As the Arrhenius rates controlling the surface diffusion
may change over several orders of magnitude within usual
experimental temperature ranges and a simulation will have
to perform correspondingly many diffusion steps per ion
impact, slight increases in temperature may easily produce
a computational bottleneck. As remarked above, our
default values correspond to a rescaled attempt frequency
(see equation (5)) of k1 ≈ 100 s−1 at 350 K, whereas
it corresponds to k1 ∼ 7.5 × 103 s−1 for 500 K and
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Figure 6. Profiles obtained from simultaneous sputtering and rotation, using the same parameters as in figure 5. t = 3, d = 6, θ = 50◦.
Left–right columns: σ = 1, 3 and 5, respectively. Bottom row–top row: μ = 0.5, 1, 1.5, 2 and 5, respectively. The last two profiles of the top
row belong to the dot region (region V) of [40]. Structure factors of the lettered profiles are provided in figure 7 (S—(relatively) smooth;
H—hole; N—non-oriented structures; D—dot).

9



J. Phys.: Condens. Matter 21 (2009) 224015 A K Hartmann et al

H N DS

Figure 7. Structure factor of the lettered surface profiles in figure 6. S ⇒ (relatively) smooth; H ⇒ hole; N ⇒ non-oriented structures;
D ⇒ dot.

a b c

Figure 8. Profiles obtained by normal incidence sputtering with (a) no diffusion, (b) Arrhenius diffusion and (c) Kawasaki diffusion.

a b c
0 0 0

Figure 9. Evolution of clusters formed by (a) adatoms, (b) vacancies and (c) adatom and vacancies together at T = 120 K,
L = 128, t = 1.5 ML. Temperature is chosen such that ES barriers are clearly visible in diffusion currents. k1 has been increased by a factor
of 103 with respect to its default value, which corresponds to a decrease in ES of ≈0.069 eV.

k1 ∼ 3×106 s−1 for 700 K. A number of previous simulations,
which tried to explore pattern evolution under the influence
of ES surface diffusion simply add vacancies or adatoms
randomly (similar to MBE simulations) and do not create
them by sputtering events [49–51]. This approach misses
the morphology dependence of the sputter yield, which is
essential for the BH instability. To study the crossover from BH
ripples to ES structures we first estimated the minimal diffusion
rates, which would create structures from ES currents of a
given cluster size or a given distance between clusters, using
well-known arguments from MBE theory [52]. From these

estimates, we expect lateral structures of ≈10 lattice constants,
if we enhance k1 = 0.01 by a factor of 103–104. Figure 9
shows patterns with k1 increased by a factor of 103, resulting
from randomly added surface defects. There are clear pyramid
or pit structures, which are oriented by crystallographic axes,
just as known from MBE simulations.

In figure 10 we show the results of a full sputter erosion
simulation with a 103 fold increase in k1, at inclined ion beam
incidence, with the same average surface defect yield and the
same surface diffusion barriers as used in the simulations of
figure 9. For comparison, we show the result of an identical
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a b

0 0

Figure 10. Surface profiles of a system with L = 128 for θ = 50◦, φ = (a) 0◦ at t = 3 ML. The bar indicates the azimuthal direction of ion
beam. Left: Arrhenius diffusion with default parameters for bond breaking and ES default parameters, thus k1 = 100 s−1, right: same as left,
but with k1 = 105 s−1.

simulation with default parameters in the left panel of figure 10.
The difference between the left and right panel can be roughly
interpreted as a temperature shift of less than 100 K. Note
that pit-and-crest structures replace the usual BH ripples and
these structures are partially oriented by the ion beam direction
and partially by crystallographic axes. Structures of this type,
which change significantly under slight temperature changes,
appear in numerous experimental observations (for reviews
see [2, 6]).

7. Surfactant sputtering

Recently sputter erosion of a monatomic substrate (A) has
been combined by codeposition arising from cosputtering
of a nearby target of substrate (B) [32]. Codeposition is
adjusted beyond the resputtering limit, so that B atoms form a
submonolayer coverage of the A surface with a density, which
is kept constant and can be carefully controlled. It is also
possible to generate gradients of the B coverage in a controlled
way. Depending on the surface diffusion of B, on its sputter
yield (YB), on the induced modification of the A sputter yield
(YA) and on the mixing and alloying properties of the A–B
system, many different pattern forming scenarios can emerge.
Here we present some results of MC simulations for simple
cases, for details see [53]. We restrict the thickness of the B
layer to at most 1 by forbidding diffusional hops, which end on
top of B atoms. B atoms, which are sputtered off, are replaced
by random redeposition. All results shown were obtained at
T = 600 K (Arrhenius diffusion) after 3 ions/atom. In the
model, different binding energies for nearest-neighbor pairs
(EAA, EAB, EBB) naturally appear. Note first of all that, if
A = B, the set-up is equivalent to an additional long-range
hopping due to sputtering/redeposition events. Thus patterns
should be modified. We find that the ripple wavelength
decreases and the surface roughness increases (see figure 11
(diamonds)) with increasing coverage. If the sputtering yield
of B is increased and at the same time the A yield is suppressed
by the presence of B particles as nearest neighbors, the surface
roughness decreases as a function of coverage, and very
smooth surfaces emerge as shown in figure 11 (circles).
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Figure 11. Roughness of surface against coverage with surfactant.
Diamonds: A = B, circles: sputtering yield YB is 10YA and the A
yield is suppressed by 0.25YA from every nearest-neighbor B atom,
squares: clustering of B and demixing favored,
EAA = 0.18, EAB = 0, EBB = 0.6. Surface diffusion without
ES barriers.

In figure 11 (squares) the barriers have been changed
to facilitate B clustering and favor demixing (EAA =
0.18, EAB = 0, EBB = 0.6, but EES = 0). This causes
a highly significant redistribution of the surfactant B on the
A surface, as is shown in figure 12. The majority of B
atoms would be located in valleys of the ripple topography if
they were distributed randomly (due to the morphology of the
ripples). In the figure, we show the ratio of the number of
B atoms to the number of randomly distributed atoms versus
height h, which constitutes a statistical estimate of surfactant
surface density. Note that sputtering plus redeposition of B=A
atoms only leads to a minor increase of density in valleys,
whereas B atoms strongly prefer to assemble on crests of
ripples if they cluster and demix from substrate A atoms. This
behavior has been observed in experiments [32] using an Si
substrate and Ag surfactant. An improved control of this
clustering could open up a way to efficiently fabricate regular
arrays of quantum wires.
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Figure 12. Statistical estimate of relative surface density of
surfactant versus height. Circles: substrate species A = surfactant
species B, squares: surfactant B is clustering and demixing from A,
similar to Ag on Si. Bond energies, see main text.

Surfactant sputtering is also an interesting tool for
nanofabrication of profiles [32]. This is demonstrated in
figure 13, which shows the surface profile emerging from
a gradient of surfactant density. Note that only a tiny
submonolayer coverage results in a rippled topography with
nanometer wavelength and well-defined slope over micrometer
length scales.

8. Summary and conclusions

We have reviewed a simple discrete model to describe pattern
formations due to surface sputtering. This model is suitable for
simulation with kinetic Monte Carlo methods. The simplicity
of the model allows us to study system sizes and timescales
well beyond the regions which are accessible by more detailed
approaches like molecular dynamics simulations or algorithms
based on binary collision approximations. As a result, we
could study the nonlinear behavior of the pattern development,
i.e. the initial formation, the propagation of the ripples, the
coarsening of the patterns and, in some cases, their final
disappearance. This corresponds qualitatively very well to
what is found in many experiments.

Furthermore, by using different approaches to describe
the atom diffusion on the surface (surface relaxation) we
could show that details of the approach have a profound
impact on the observed behavior. For example, using an
irreversible Wolf–Villain diffusion, we could not observe
long-time nonlinear effects. Hence, irreversible relaxation
oversimplifies the model. Furthermore, we observed that,
by increasing the effective diffusion rate (by choosing
materials with lower Schwoebel barriers or choosing a higher
substrate temperature), pyramid-like structures can be obtained
under suitable conditions, which are also seen in numerous
experiments and are of interest for generating quantum-dot
structures. Hence, our results suggest a more systematic
approach to quantum-dot generation.

Also, we could show that, depending on the ion types
and ion energies, which are easy to change within simulations,

Figure 13. Mean of surface height in direction perpendicular to ion
beam direction. In (a) λ2 = 0. In (b) λ2 = 0.25. In both cases
λ1 = 10. Average coverage of surfactants is 20%.

(This figure is in colour only in the electronic version)

other types of patterns are to be expected, beyond what has
been observed in experiments so far. Although some parameter
combinations seem to be outside the physically feasible
region, these results should stimulate additional experiments
for ion/energy combinations which have not been considered
so far.

Our results also show that, from this practical viewpoint,
if one wants to generate regular patterns for use in quantum-
dot experiments, ion beam sputtering on rotated substrates
are very suitable. The patterns become ‘sharper’ and more
regular compared to unrotated substrates. In particular, we
could identify a parameter region where dot-like structures are
observed in our simulations.

Finally, we also performed new simulations to model
recently performed surfactant sputtering experiments, where
sputtering is combined with a codeposition of a different atom
type (surfactant). Our results show that the surface patterns
are strongly influenced by the presence of a submonolayer
coverage of the surfactant atoms. For example, our simulation
show that surfactant atoms which decrease the sputter yield of
the substrate lead to much smoother surfaces, which is of high
technological interest. Furthermore, in case a ripple structure
is present, we observe cases where the surfactant atoms prefer
to cluster on the crests of the ripples. This indicates a possible
approach for the creation of nanowires. An even larger variety
of structures can be obtained when creating spatial gradients of
the surfactant atoms.

To summarize, kinetic Monte Carlo simulations of a
simple model for ion beam sputtering allow us to describe the
crucial aspects of the sputtering process and to observe many
different types of resulting patters. The systematic variance
of parameters, which is easily performed in simulations, allow
us to quickly find combinations of parameter values which
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are of physical and technological interest. Then one can use
these results to focus on the interesting parameter combinations
in experiments, which are more expensive and more involved
compared to simulations.

Nevertheless, for allowing quantitative predictions for
different materials, further developments are necessary. For
example, it would be desirable to extend the model presented
here by describing subsurface processes, like vacancy creation,
by including a model for the impact of the energy carried by
the beam atoms which is not converted to sputtering, and by
including a somehow more detailed modeling of the sputtering
process, which goes beyond the Sigmund description. Here,
hybrid methods combining the simple discrete model with a
more detailed modeling of few ion impacts could be used.
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